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EVALUAT I ON OF BLOCK ADJUSTMENT RESULTS 

Summary 

Presented Paper 

Statistical tools can serve as an a i d for computer assisted eva l uation of 
block adjustment results. This concerns gross errors, systemat i c errors and 
errors in the a prior i we i ghts . The paper shows how far a computer program 
could be able (1) to detect, compensate, or eliminate those errors, (2) to 
give i nformat ion about non detectable errors and their influence on the 
result, i. e . the coordinates. This can serve as an object i ve measure for 
the rel lability of the blockadjustment. 

1. Introduction 

1.1 The evaluation of block adjustment results a i ms at the acceptab ility 
of the determined coordinates . The result is acceptable, if the data and 
the block geometry are checked by adequate tests . This concerns on the 
one s i de the detection of gross errors and the perception of systemat i c 
errors . On the other side one needs information about the prec i sion and the 
rel lability of the coordinates . 

In pract i ce th i s evaluat ion, which usually is made by human inspection (by 
check i ng the residuals, exam i ning the 11 network diagram 11 etc.), i s very com
bersome , for there is often a great amount of data. This is why computer 
assistance is wanted . The paper is supposed to show how far th i s is poss i b
le by using stat i st i cal tools . 

1.2 The underlying theory is essential l y the reliability theory by Baarda 
(1967/8/76) . An extension to tests on several gross errors or parameters , 
which is urgently necessary i n photogrammetry, is subject of the paper . I t 
forms a 1 ink to the theory for genera) 1 inear hypotheses, known from sta 
tist L . . (cf. e. g. Searle, 1971). 

The theory is based on the following idea: The adjustment is founded upon 
the assumpt ion (in statistical terms the nullhypothesis H0 ) that there are 
on l y random errors . Other errors expected, gross or systematic, are formu
lated in an alternative hypothes i s Ha. An optima l test decides between H0 
and Ha. The sensitivity of the test l eads to lower bounds for gross or 
systematic errors, which can just be detected by the test with a preset 
probability . The rel lability of the result can be described by the influ
ence of non detectable e r rors on the coord inates. 

1 . 3 Gross and systematic errors in th i s context are both supposed to be 
errors i n the functiona l model only . It allows a joint treatment of both 
error types . This approach, though customary, obvious l y can not be taken 
for granted for two reasons. There is no clear distinction between gross 
and systemat i c errors; l ocal systematic errors and gross errors can have 
the same effect. Also the assignment of the erro rs to the functional or to 
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the stochastica l model i s a matter of op1n 1on to a certa in extent, as the 
true error sources are not known usually. This is conf irmed by the fact , 
that in a wide range the refinement of the functional model can be substitu
ted by a refinement of the stochast i ca l model and vice versa, e . g . by ta 
k i ng into account the correlation between the observed i mage coordinates 
(Schi l cher, 1980) or by changing the weights of bad observations instead of 
introducing additiona l parameters or e li minat ing the erroneous observations . 

Fortunately experiments show that systematic errors are rather constant, at 
least a great amount of the error budget can be absorbed by add iti onal para 
mete r s via selfcalibrat ion, i.e. by extending the functional model. Al so a 
great percentage of the gross errors would e i ther occur once more, i f the 
measurement was repeated, or at l east would be in the same magnitude, if 
the coordinate e . g . was measured erroneously a second time. lt reveal~ 
that gross errors can be treated as locally confined systemat i c errors, i. 
e. errors i n the functional model. Generally gross errors also do not influ
ence the prec i sion of the observed values, at least not more, than the 
weights do vary because of the always very much simplif i ed stochastica l 
mode 1 • 

1.4 The theory for treating the stochastical model i s developed not near
ly so far . Only est i mating we i ghts or correlations is possible . One can 
obta in information about the variances of the est i mated values . A statis 
tical test i s not availab l e as the probab ility di str i but ion of the esti 
mated weights o r correlations is not known . This drawback of evaluating 
block adjustment results i s not too considerable from a practical point of 
view , as pure economica l reasons prohibit an extension of the stochastical 
mode l which is pushed too far . Therefore the paper only shows the possib i-
1 ity of estimating we i ghts of groups of observat ions or of we i ghts, which 
depend on g iven parameters. This seems to be necessary and practicable, as 
the i nference drawn from gross error tests h ighly depend on the chosen 
weights. The additiona l effort i s neg! igible. 

2. The mathematical model and its errors 

2.1 The mathematical mode l 

Let us consider the linear (or I i nea ri zed) functional model 
u 

E (1) = 1 + E: = I a. x . =A X= B t + c k 
1 

I I 
( 1 ) 

with then observations l i forming the vector 1, the g i ven design matrix A 
with the co lumns a i and the corresponding u unknowns Xi forming the vector 
x. x may be spl it into the vectors t and k for the Ut unknown nuisance 
parameters (such as sca l e, orientation, possibly project ion centres) and 
the ukunknown coordinates resp., with the corresponding partition of A= 

(B c) . The model generally does not fit to the observed values . The vector 
E: describes the model errors . 

The stochast i cal model has the same structure . The covariance or dispersion 
matr i x of the observat ions is 

p 

( ) -2 1 -2 01 = Qa =t..Q.a ., 
0 

1 
J O,J 

i n which Q is the given weight 
ance factor. S i milarily to the 

(2) 

coefficient matr ix and cr~ the unknown var i
expectat ion E(1) the var i ance covariance 
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_2 . matrix i:~split into additive components Oj o0 ,J with given Oj and unknown 
factors o6,j. 

The extension of the stochastical model needs an explanation. Eq.(2) allows 
to estimate e. g. the ratio between the weights of different groups of ob
servations. In the case of two groups, e . g. photogrammetric and geodetic 
observations, one chooses 01 = diag(Opp• o) and o2 = diag(o, Ogg). A second 
example is the radial component of the variance of image coordinates, which 
might depend on the field angle a. between ray and optical axis: a~. = a2 + 
62 ~2fcos4 ai.; represents the s~andard deviation of the measurin~ process 
and b is the standard deviation of the ray, i. e. of a. c is the fo~al 
length. In this case one wil 1 choose o1 = a2 I, 02 = diag(b2 c2/cos ai). 
a and bare approximate values, the estimators a0 , 1 and 80 ,2 are factors 
for a and b to get better approximations. 

The estimation of the unknown parameters is based on the assumption, i. e. 
the null hypothesis H0 : 

E ( d Ho) = 0; E ( 0 
2 

. I H ) = a 2 
. ' j = 1 ' ... 'p . ( 3) 

O,J 0 O,J 

In order to set up tests one has to specify the expected model errors, i.e. 
formulate one (or several) alternative hypothes i s Ha. We perform this sepa
rately for thefunctional and the stochastical model. 

2.2 Errors in the functional model 

The expected errors in the functional model are denoted by Ve . By analogy 
to eq.(1) they are assumed to depend 1 inearily on additional parameters V~. 
The alternative hypothesis then appears in the form 

--.1 --..J 

Ve = H Vs f. 0 . ( 4) 

It covers systematic errors and gross errors, if the matrix His chosen 
properly. The difference is revealed by the structure of H: Systematic 
errors influence all observations, this leads to a (rather) full matrix H, 
while in the case of gross errors His sparse. 

If we assume an error in point transfer we have to deal with two gross 
errors, VSx and ffoy resp .. . They influence six observations, i. e. the coor
dinates of the points in three consecutive pictures. In this case H has the 
form H1 = (o, ... ,o,I2,o, ... ,o,I2,o, ... ,o,I2,o, ... ,o), in which the unit 
matrices are placed at the coordinates of the three points concerned. 

2.3 Errors in the stochastical model 

The description of the expected errors in the stochastical model, e. g. 
errors in the a priori weights, is simpler than eq.(4) 

E(o 2 . jH ) = E(o2 . jH ) 
O,J a O,J 0 

as the factors vtj are not 
matrix A the structure of 
of alternative hypotheses . 
(2). 

,..., 
• Vt.; 

J 

-.J 

Vt. f. o. 
J 

(5) 

specified in detail. Similarly to the design 
the matrices Oj is fixed and can not be subject 
Otherwise one has to change the model eq.(1) and 
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3. Estimation of parameters 

The es~imation of the unknowns xi and a~,j is acc?mplishe~ bX t~o stees . 
Accord1ng to the theory of least squares the estimators x, t, k and s 
for;, t, k and E resp. are linear functions of the observations. The esti
mators a5 J. for a0

2 ~· are quadratic functions of the observations. They on-
' ' . ..... ly depend on the re 1duals v = s. 

3 .1 Estimators in the functional model 

The practical procedure takes into account the different structure of H 

for systematic and gross errors, only for operational reasons. 

If systematic errors are expected the rrodel eq.(1) is therefore extended 
to 

E (1 ) = A x + H s = B t + C k + H s ( 6) 

The alternative Ha eq. (4) is then equivalent to s = o (i. e. Vs - .S). We 
use the estimated parameters s with their weight coefficient matrix 

QSS = (HI p (Q - A (A I Q-1 A) -1 A I) p H)- ' 

for the testing procedure. 

(7) 

Obviously this treatment is not possible for gross errors as one does not 
know which observations are erroneous. We test the residuals v with their 
weight coefficient matrix 

o = o - A (A I o-1 A)- 1 A I • vv (8) 
for error detection. 

Note that Q§§ = (H 1 P Ovv PH)-, in which 0§§ is the result of the exten
ded model eq . (6) while Ovv is the result of the original model eq . (1). We 
will not refine the notation to designate this difference but use it 
throughout this paper . We will therefore not treat systematic and gross 
errors simultaneously but parallel. The joint evaluation of both error 
types is discussed in ch. 7. 

3.2 Estimating in the stochastical model 

There are several algorithms for estimating the variance factors a2 · 
0 'J . (Searle, 1971, Grafarend, 1978, Koch, 1978, Forstner, 1979). The one g1 ven 

here is very economical, if the observations are not correlated 

-.2 v 1 P Oj P v 
a . = 

0 ,J tr (Q P Q. P) 
vv J 

v: p. V• 
J J J 

t r (Q P.) 
vv J 

(9) 

I t only needs the diagonal elements of the matrix Ovv• thus only a small 
part of the inversed normal equation matrix has to be computed. The other 
estimators offer the variance of the variance factors for a rough evalua 
tion. As the probability distribution of the estimators is not known (cf. 
in troduction) we will concentrate on the analysis of the errors in the 
functional model. 
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4. Statistical tests 

The evaluation of the functional model usually i s done i n a h iera rchical 
way. The well known F-test on the globa l var i ance factor cr~ g i ves very poor 
information as al l types of model errors accumulate in &~. Testing the al 
ternative hypotheses is spl it in to a global test, exam i ning a ll pa rameters 
or gross errors together and a single test for localization. 

4.1 Gl oba l test 

The global test uses the test statistic 

T"'x' 2 ( r s 'cS 2) • 
( 1 0) 

They can be obta i ned by an adjustment i n steps , start in g with the extended 
model eq.(6) (cf. Pelzer,1977) and introducing the null hypothes i s 
H0 : s = o as a cond iti on in a second step. Testing ofT i s the same as 
testing the var i ance factor of the second step. In both cases T i s indepen 
dant of the chosen ge nera lized inverse and fo ll ows a noncentral x2-distri
but ion with rs degrees of freedom and non-centrality parameter o2 (s), 
where rs is the rank of the matr ix to be inverted and 

o2 (s) = ~ · o:~ s I cr 2 or o2
(s) = s' H 1 p Q pH~ I cr 2 

-ss o vv o 
( 11 ) 

If one does not want to use a given value cra for the variance factor one 
can a l so take the test stat i st i c 

Tlrs 
R = ---------------- with R"'F'(r r-s' r s ' ( 12) 

(rl - T) I ( r - r ) 
0 s 

which follows a non- centra l F-distribution. rl0 = v' P vis the we i ghted sum 
of the residuals from the or i g i na l mode l eq . (1) includ ing th e systematic or 
gross errors and r i s the redundancy of this adjustment . 

If c52 = O,i . e. i f the null-hypothesis H0 i s true, the test stat i stics 
follow a centra l x2- o r F-distribution. H is rejected, i f the stat i st i cs 
exceed the cr i t i cal values x2 (a, rs) or F~a, rs, r-rs) depend i ng on the 
sign i ficance l evel 1-a. 

4.2 Singl e test 

For the localization of the error sou rces one specia lizes Ha, e . g. by 
a~sum i ng on l y one parameter , gross er ro rs which in f luence one s ing l e ob 
servat ion each o r a s in gl e gross error . This l eads to well known sing l e 
tests as the t-test, the test of Stefanovic (1978) or the "data-snooping" 
of Baarda (1967) resp .. Each of_ these tests leads to mutually dependant 
test stat i stics , if it is used for the check of severa l alternat i v hypo
theses simultaneously . 

5 . Sens i t i v i ty of tests 

I f the tests do not in d i cate a s i gn i f i cant error in the funct ional mode l, 
there may s till remain errors undetected by the test, To get an i dea about 
the sensitiv i ty of the tests one can ask for 1 ower bounds Voe of the 
errors IJe, which can just be detected wi th a g i ven p robabi li ty S0 . These 
erro r s lead to a l ower bound o~ = 6~(a, S0 ) of the non - centra lity paramete r 
dependant in addit ion to (3 0 on the s i gn ifi cance l eve l 1-a. a and (3 are 

assumed to be given, thus cS 0 i s f i xed . 0 



Instead of Ve we ana l yse the parameters Vs . From eq . ( 11) we obta i n a rela 
tion for the l ower bounds V0 s 

o = lv s 1 Q·A V s I a or 
0 0 55 0 0 

r; 
0 

IV s 1 H 1 P Q PH V s I a (13) 
0 vv 0 0 

which desr i bes an e lli pso i d l ike f ig ure . Parameters with in th i s f i gure can 
not be detected by the test with a probab il ity grea t er than 80 (cf . 
Forstner, 1976 , v . Mierlo, 1977 , Pelzer , 1980) . The standardized l ength 
o~ (s ) of the vector V0 e or V

0
s is 

6 1 (s) /v el p v e I a lv s 1 H I P H V s I a hs Q~s v s I a 
0 0 0 0 0 0 0 0 0 

in wh ic h o;s = H I p H i 5 the weight matrix of those pa ramters s, if the 
vector x i 5 f ixed . Di vid i ng by eq . ( 1 3) we obta i n 

s 1 H 1 PHs 

o 1 (s ) = o or o 1 (s) = o ( 14) 
s

1 Q~ 5 s 

0 0 0 0 
s 1 H 1 P Qvv PHs 

With o~ (s) we get a practical formula for the l ower bound 

V s = s • a • 8 1 (s) 
0 5 0 

( 15) 

of the parameters s. For the test of the add i t iona l parameters eq . (15) 
re duces to 

V0 s = s • a • o I I s 1 QA A s 
0 0 55 ( 15a) 

The l ower bounds depend on 1 . the d i rect i o n of the assumed error (s) , 2 . 
the precis ion (o

5
) , 3. the statistica l pa rameters a and S0 (6 0 ) and 4. the 

geomet r y (o ;; ... or Ovv) . In eq . (15) the l ower bound V0 s is split into avec
tor part ( ~ 5 ) and a sca lar part (V 0 (s) =as o~(s), i. e. V0 s = s 1}

0
(s)). 

I f the vectors is standardized to 1 the sca l ar part uescribes the ell ipso
id 1 i ke f i gure v i a po l ar coord i nates . 

Eq . (14) and (15) show that the sensit i vity of the tests is the qreater (0 1 

sma l l) the smal l er the var iance of the parameters after the adjustment or 0 

t he greater the variance of the res i duals , i. e . the greater the redundan
cy . 

I f we spec ialize and assume on l y one parameter~ we obtain the measure for 
the determ i nabi li ty V0 s = 80 ag of the parameter , which is proportional to 
its standa rd error a posteriory (cf . Forstner , 1980, Pelzer, 1980) . If we 
assume only one gross er ror we obta i n the measure fo r the controllability 
of t he observation concerned 7 0 1 i= a 1• 80 l!ri, in wh i ch the redundancy 
number r i = (Qvv P)i i i s the co ntr ibution of the observat i on lito the 
total redundancy (Fors t ner , 1979). In both cases 00 is easy to be computed: 
We obta i n for the test with T 8

0 
= ¢- 1(1-al2)+ ¢- 1 (1-S 0 ) with the cumulative 

normal distribut ion¢ . E. g . a = 0 .1 %and B
0 

= 80% leads to 80 = 4.2. 
I. e. paramete r s less than 4·oA can not be detected by the test with a 
probab ili ty greater than 80 %. s 

~ . Re l iabi 1 i ty of result 

The reliability of the result can be described by the influence of non de 
tectable er ro rs in the mathematical mode l on the coordinates . Non detecta 
b le systemat i c or gross er rors V0 e = H V

0
s lead to a deformation Vok(s) of 
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the coord i nates 

V
0
k(s) = Qkk C1 P V

0
e(s) , C =(I - B (B 1 P B) - 1 B1 p) C. (16) 

Th i s deformat ion vector js very il lust rat i ve , but should be ca l cu l ated for 
a ll poss i bl e d i rections of s , whi ch i s i mpossib l e . Therefore we on l y use 
the standa r d i zed l ength 80 (s) of t h i s vector (s i mil a r ly to the sensit i v it y 
va l ue ob) . I t is 

8 (s) 
0 

I a 
0 

Div i d i ng by eq . (13) we obta i n 

8 (s) 
s 1 H 1 p c1 okk c p H s 
- --- - ---- - - or 8 (s) 

0 
0 

0 s 1 Q;: .. s 
55 

0 
0 

0 
s 1 H 1 P Qvv PHs 

( 1 7) 
8

0
(s) a l so descr i bes an e lli pso i d li ke f i gur which directly can compared 

wi th ob(s) and shows , how much an error V0 s i nf l uences the resu l t depen
dant on the d i rections . In order to get a mo re p ract i ca l formu l a a l so in 
th i s case , we cons i de r the i nf l uence V0 f(s) of V0 s on a l i near (o r li nea 
r i zed) func ti on f = g 1k of the coord i nates . By us i ng Cauchy - Schwarz 1 s i n
equa li ty it ca n be shown that th i s i nf l uence 

V f (s) < a f • 8 (s) 
0 - 0 ( 18) 

i s l ess than the co- fo l d standard dev iat ion OfO f the funct ion . 

If we spec i a li ze and assume on l y a s i ng l e gross erro r we obta i n Zo ,i 
o0 luk;/r j, the measure for the (externa l ) reliabi l ity , i . e . the mr1ximurn 
i nf l uence of a non detectab l e gross e r ro r onto the coord i nates (Baarda , 197~ 
Uk i i s the contribut ion of the obse r vat ion f i to the determ i nat i on of the 
unknown coord i nates , cf . Forstne r, 1979) . 

7 . Di scuss i on 

The extens i on of the rel i ab ili ty theo ry towards multid i mens ional tests 
g i ves answer to seve ra l pract i ca l and theo ret i ca l questions . 

7 . 1 I t i s poss i bl e to test a ll k i nds of gross errors , wh i ch can be 
formu l ated as er rors in the ( li near) funct iona l mode l. I t i nc l udes 
near l y a ll types of gross errors occuri ng i n photogrammetr i c b locks , 
espec i a ll y po i nt i ng erro r s , er rors of po i nt tra nsfer , mi s i dent i f i cat i on 
of groups of po in ts , exchange of po in ts etc .. 

Th i s i s va li d , as long as the gross e r rors are not too l arge , because 
the tests are deve l opped wi th i n a li near functiona l mode l. I n pract i ce 
th i s i s a drawback , as very l arge e r rors have to be found by othe r means , 
e . g . by rough checks of the image coord i nates , of the connections between 
the i mages or mode l s , or by checks du ri ng the ca l cu l at ion of the 
approx i mate va l ues . Spec ia l comp li cated errors as a wrong coord i nate 
system will cause troubl e i n any case . 

Nevertheless , the theo ry g i ves an object i ve indication when to stop the 
error detect ion process . 



7 . 2 The evaluat i on of the systematic errors and of the ir influence on the 
result can be made transparent . There are three cr i ter i a : the s i gn ifi cance 
and the determinabi li ty of the pa rameters and the rei i ab il i ty of the 
coordinates with respect to non determinab le parameters . All three have a 
ri ght on the i r own . (cf . Ackermann (1980)) : 

- Si gn i f icance tests can be used to check whether the presumed systemat i c 
errors are i nherent i n the data . The parameters wi 11 have a physical 
meaning in th i s case . 

- The check on determinabi lity (6 1 (s) , eq . (1 4 ) can be used to select 
parameters out of a g i ven set i~ order to ga i n a stab l e so l ut i on . The 

parameters may have a physical mean in g or not i n t h i s case . 

-The check on re li ab il ity (8 (s) , eq . (17)) can be used for the same 
purpose . Especially , if the

0
parameters are not supposed to have a 

physica l meaning , this check leads t o the best resu l t (as far as the 
se l ect i on i s concerned) , because the i nf l uence of non determ i nab l e para 
meters on the coord iantes is bounded . 

In all three cases the evaluat i on i s poss i ble for single pa rameters or 
g ro ups of parameters. This is advisab l e, i f the parameters a re highly 
co rre lated , but also i f the groups are rather large (>1 0) and one has 
to expect moderate correlat ions (about perfect correlat ion , see below). 

The s i ngle test for local izat ion should be 1 inked to the globa l test 
e . g . by choos i ng the s i gnificance leve l i n a way that the correspond i ng 
sens i t i v i ty o f the tests i s equal , i.e. by fix i ng the lower bound o~ for 
the non centra lity parameter and t he power B0 of the test (cf . Baa r da ,1968) . 

7 . 3 The cr iteria of determinability and of rei i ab il ity can be used for 
an opt imizat ion of the block geometry , as they only depend on the mathe 
mat i cal model , i. e . the geometry , but not on the obse r ved values . Here one 
will be interested in those systematic errors , which can be dete rmi nedmost 
weakly or have the h i ghest infl uence on the result, if they stay undetec 
ted, in order to strengthen the b l ock . Th i s means that one has to f i nd 
the vectors which l eads to the highest va l ues o1

0
(s) or 6

0
(s) . The 

so l ution can be obta i ned by solv i ng e . g . o 1 0 (s) ~max , wh i ch i s equivalent 
to finding the largest e i genva l ue ::\=(6 1

0
/6 0 )2 inlo55!.-ossl= 0 and 

determ i ning the correspond i ng eigenvector . (This procedure a l so can be 
used i n deformat ion ana l ys i s) . 

7 .4 As systematic and gross erro r s allow a joint treatment, a jo int 
test in g procedure i s advisable. It has the advantage that both types of 
errors can clear l y be i dent i f i ed . 

If the geometry does not al l ow a d i st inct ion between systematic and gross 
e rro r s , i t is i nd i cated by identical test statistics TorR resp . . Th i s 
i s important, espec i a ll y i n the case of poor contro l, where g ross errors 
i n con tro l po i nts can p retend systemat i c e rrors i n the photogrammetr i c 
images . In th i s case the pa ramete r s and the res id ua l s are perfectly corre 
lated . 

The check of the observat ions i n the or i gina l model al lows to test those 
obse r vations , wh i ch i n the extended mode l would be not control l ab l e . 

Of cou r se a refi ned error detection on the basis of the extended mode l 
eq . (6) i s necessary as the systemat i c errors a re in the magnitude of 
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small gross e r rors (ca . 10 ]Jrn ) . 

7 . 5 The test std tist i cs T and Rare i ndepende nt of the used genera l ized 
i nve r se . This is the reason why perfect cor relation o f parameters and 
res i dua l s l eads t o the same test s tatistic . 

I t a l so j ust i f ies the p ract i cal p rocedure that one of two paramete r s , 
wh i ch a re pe r fect l y co rrelated , or a parameter , which i s determ i ned by 
a s in g l e observat ion has to be e li minated . I f the solut ion is stab i li zed 
by add i tiona l observa t ions for the parameter values , perfect or very h i gh 
correlat i on of pa ramete r s wi th other unknowns (not res i duals) wi l 1 have 
not to be feared , as the solu ti on cannot tend to a wrong resu l t . 

The c r iteria are val i d for arb i trary weight matrix . Thus al so correlated 
observat ions can be tested . This implies thdt the test proposed by 
Stefanov i c (1978) i s not restricted to unco rre lated observa ti ons o r g roups 
of observa t ions . 

7 . 6 The eva l ua t ion of the chosen weights i s not poss i b l e to such an 
e xten t as the eva l uat ion o f the funct i ona l mode l. As the e rror detection 
procedures s e ns i tive l y react on erro r s i n we i ghts , they shou l d at least 
be checked . Of co urse , fo r s i ngle observations a dist i nction between a 
gross error and an e r ror in we i ght is not possib l e. Thus one may prefer 
dimin i sh i ng the we i ght rather than elim i nat i ng an observat ion i f t he 
est i mated er ror is sma ll and the change of we i ght can be just i f i ed e . g . 
by t he image qua li ty . 

7 . 7 Though compute r a s si sted evalua ti on can be driven rather fa r there 
are st i l l severa l problems to solve. 

Strateg ies for jo i nt gross e r ror detect ion and perception of systemat i c 
e r ro r s have t o be wo rked out. A r i gorous test on severa l (e . g . >10) 
erro r s i s t o costly and the mutua l i nf l uence of both e rror types has 
to be taken into considerat ion . Special attention sho uld ther fore be 
g i ven to preadjustment error detection (cf . Molenaar and Bouloucos , 
1978) and also to s equen t ial testing procedures with respect to the 
i ncreasin g use of analyt i c plotters . 
Most gross er rors only have a locally 1 imited inf l uence . The ineq uality 
eq . (J7) , wh i ch defines the reliabi li ty of the coord i nates , contains 
the standard e rro r o f an arb i trary function of the coo rd i nates . This 
mi ght be very l a r ge t hough the rea l influence is l ow , e . g . because t he 
obse r vat i on and the f unction concerned a re i n d i fferent parts of the 
b l oc k. A better app roxi mat i o n t han eq . ( 17) i s desi rab l e . Th i s would 
be a c l oser 1 i nk between re li abi li ty and prec i s i on . 

The evaluat ion of the prec i s i on i tself (cf . Baarda , 1973) shou l d be 
made operat iona l, poss i bl y wi th app ro xi mat ions , in orde r to be able 
to guarantee the reli abil i ty of the result . 

An extension of the theory towards an eva l uation of the stochastical 
mode l wou l d be usefu l in or der to ga i n comp l ete i nformat ion about the 
acceptab i l i ty of t he b l ock adjustment results on the bas i s of the 
chosen mode 1 . 
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